منابع مشابه
A Note on Logharmonic Mappings
where (a) m is nonnegative integer, (b) β= a(0)(1+a(0))/(1−|a(0)|2) and therefore, β >−1/2, (c) h and g are analytic in U , g(0)= 1, and h(0)≠ 0. Univalent logharmonic mappings on the unit disc have been studied extensively. For details see [1, 2, 3, 4, 5, 6, 7, 8]. Suppose that f is a univalent logharmonic mapping defined on the unit disc U . Then, if f(0) = 0, the function F(ζ) = log(f (eζ)) ...
متن کاملA Factorization Theorem for Logharmonic Mappings
We give the necessary and sufficient condition on sense-preserving logharmonic mapping in order to be factorized as the composition of analytic function followed by a univalent logharmonic mapping. Let D be a domain of C and denote by H(D) the linear space of all analytic functions defined on D. A logharmonic mapping is a solution of the nonlinear elliptic partial differential equation f z = a ...
متن کاملPlanar Harmonic Univalent and Related Mappings
The theory of harmonic univalent mappings has become a very popular research topic in recent years. The aim of this expository article is to present a guided tour of the planar harmonic univalent and related mappings with emphasis on recent results and open problems and, in particular, to look at the harmonic analogues of the theory of analytic univalent functions in the unit disc.
متن کاملUnivalent Harmonic Mappings Convex in One Direction
In this work some distortion theorems and relations between the coefficients of normalized univalent harmonic mappings from the unit disc onto domains on the direction of imaginary axis are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1993
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1993-1195710-1